EF1SRP-01U ユーザーズガイド

株式会社彗星電子システム 第6版 2010年9月 発行

1. 概要

EF1SRP-01Uは、EFP-I本体に装着して使用するEFP-I本体専用シリアル書込みユニットです。

EF1SRP-01Uを使用することにより、ルネサスエレクトロニクス製フラッシュメモリ内蔵MCU又はPROM内蔵MCUへのシリアル入出力モードによる書込み、読出しができます。

図1. 1 に E F 1 S R P - 0 1 U の 外形 図 を示します。

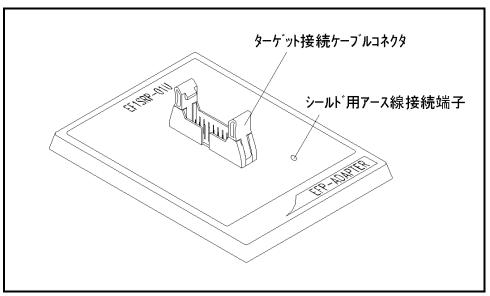


図1.1 EF1SRP-01U外形図

2. セットアップ

図2. 1にEF1SRP-01Uの実装図を示します。

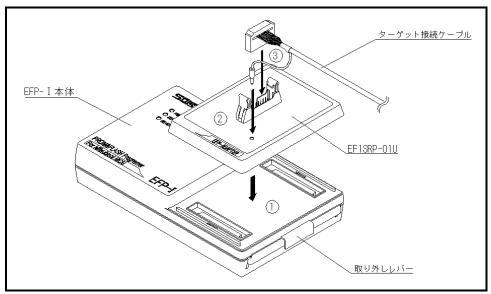


図2.1 EF1SRP-01U実装図

2. 1 ユーザーターゲット基板との接続手順

ユーザーターゲット基板との接続は以下の手順で行ってください。 ユーザーターゲット基板とライタの電位差を無くすために⑤のアース線接続を行ってから接続を行ってください。

- ①EF1SRP-01UをEFP-I本体に取り付ける。(方向に注意)
- ②ターゲット接続ケーブルのアース線をEF1SRP-01Uの接続端子に挿入する。
- ③ターゲット接続ケーブルをコネクタに挿入する。
- ④EFP-I本体の電源を投入する。
- ⑤ターゲット基板のシグナルGNDにアース線(先端芋虫クリップ線)を接続する。
- ⑥ターゲット接続ケーブルのターゲット側を接続する。
- ⑦ターゲット基板の電源を投入する。(周辺回路の状態に十分注意して下さい。)
- ⑧書込み、読出し等をパソコン操作により行う。

2. 2 ユーザーターゲット基板との切り離し手順

ユーザーターゲット基板との切り離しは以下の手順で行ってください。

- ①ターゲット基板側の電源をOFFする。
- ②ターゲット基板側のターゲット接続ケーブルを切り離す。

2. 3 注意事項

ターゲット接続に関する注意事項を以下に示します。

- 注1:EFP-I本体のデバイスLED(赤)の点灯時は、ターゲット接続ケーブルは活線状態となっていますので、ケーブルの挿抜は行わないでください。
- 注2:ターゲット基板側の電源投入は、EFP-I本体の電源がONの状態で行ってください。 EFP-I本体の電源がOFFの状態でターゲット基板側の電源をONさせた場合、EFP-I本体側にターゲット電源が回り込み、EFP-I本体の電源がONする場合があります。 また本現象は、EFP-I本体およびEF1SRP-01Uのターゲットインターフェース 回路を破壊するおそれがありますので十分ご注意ください。
- 注3:ターゲット接続ケーブルのアース線(先端芋虫クリップ線)はユーザーターゲット基板のシグナルGNDに接続してください。ただしパーソナルコンピュータのGNDがユーザーターゲット基板のシグナルGNDにあらかじめ接続されている場合は、必要ありません。

3. ターゲットインターフェース回路

EF1SRP-01Uからターゲット基板に接続される信号の入出力回路を以下に示します。

①MCU電源、書込み用電源(T_VDD、T_VPP)

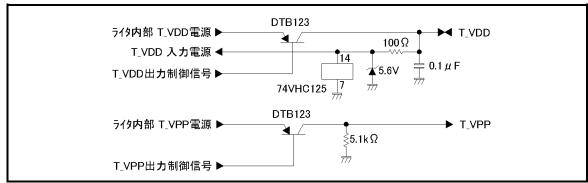


図3.1 T_VDD、T_VPP I/F回路

②出力制御信号(T_TXD 、 T_SCLK 、 $T_PGM/OE/MD$)

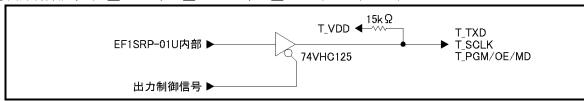


図3.2 出力制御信号 I/F回路

③入力信号(T_RXD、T_BUSY)

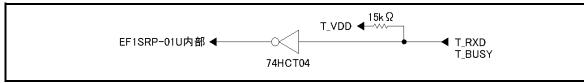


図3.3 入力信号 I/F回路

④リセット信号 (T_RESET)

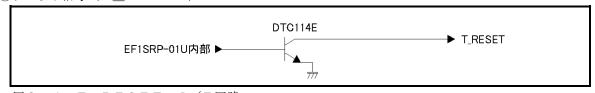


図3.4 T_RESET I/F回路

4. ターゲット接続ケーブル仕様

ターゲット接続ケーブルは、標準品として先端バラ線タイプ品を付属していますが、別売品として3線式 (8ピン、コネクタ加工品)と4線式 (10ピン、コネクタ加工品)ケーブルがあります。

4. 1 ターゲット接続コネクタ

図4.1にEF1SRP-01 Uのターゲット接続コネクタピン配置図を示します。

表4.1にターゲット接続コネクタの端子表を示します。

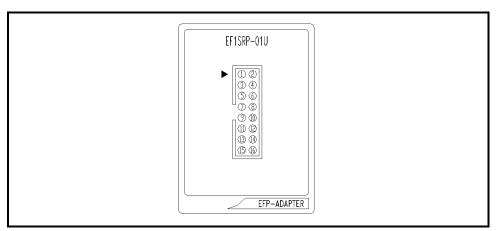


図4.1 ターゲット接続コネクタピン配置図

表 4. 1 ターゲット接続コネクタ端子表

ターケ`ット接続コネクタ Pin No.	信号名	線色 ※4	入出力(ライタ側)	MCU 接続方法			
				3 線式 ※1	Pin No.	4線式 ※1	Pin No.
1)	GND	橙/赤点1	_	GND ※3	_	GND 💥 3	1
2	GND	橙/黒点1	_				
3	T_VPP 💥 2	灰/赤点1	出力	VPP	2	データブック参照	4
4	T_VDD 💥 2	灰/黒点1	入出力	MCU VCC	3	MCU VCC	(5)
(5)	N. C.	_	_	_	_	_	_
6	N. C.	l	_	1	_	_	_
7	N. C.	白/赤点1	_		_	_	_
8	T_PGM/OE/MD	白/黒点1	出力	PGM or OE	6	CNVSS	8
9	T_SCLK	黄/赤点1	出力	SCLK	4	SCLK	6
10	T_TXD	黄/黒点1	出力	SDA	5	RXD	7
11)	T_RXD	桃/赤点1	入力			TXD	2
12	T_BUSY	桃/黒点1	入力	BUSY	1	BUSY	3
13	N. C.	橙/赤点2	_	_	_	_	_
14	T_RESET	橙/黒点2	出力	RESET	7	RESET	9
15	GND	灰/赤点2	_	GND 💥 3	8	GND 💥 3	10
16	GND	灰/黒点2	_				

※1:3線式、4線式はシリアル書込み方式の種別を示します。

※2: T_VDD、T_VPP は MCU によって接続方法が変わります。詳細は補足資料または MCU のデータブックを参照ください。

※3:GND は 4 端子用意しています。 $ターf^*$ ット基板に接続する場合、1 端子のみ接続されても問題ありませんが、2 端子以上の接続を推奨します。

※4:線色の識別方法を図4.2に示します。

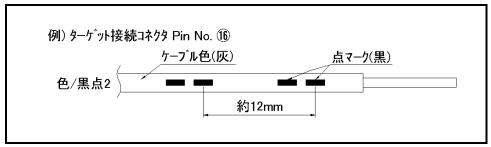


図4.2 線色の見方

4. 2 ターゲット接続ケーブル外観図

ターゲット接続ケーブルの外観図を以下に示します。

①先端バラ線ケーブル (標準品)

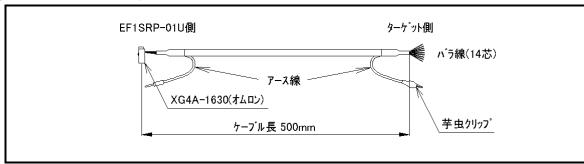


図4.3 先端バラ線ケーブル外観

②3線式ケーブル (別売)

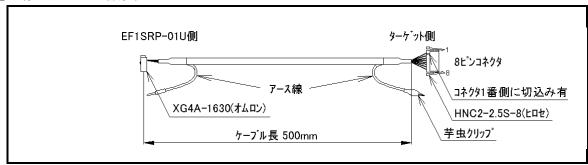


図4.4 3線式ケーブル外観

③4線式ケーブル (別売)

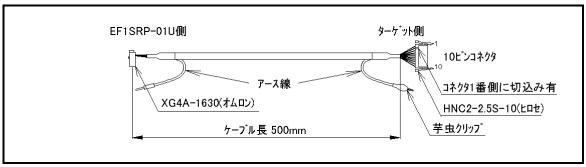


図4.5 4線式ケーブル外観